

Rauchzeichen aus der Toxikologie

DR. RER. NAT. REINHILD BEYREISS

Aktiver Raucher oder Nicotinsubstitutionspatient – kann diese Frage beantwortet werden? Eine erweiterte Analytik soll helfen. Seit Januar 2016 werden im Sonic-Verbund unter der Anforderung Tabak-Alkaloide die Substanzen Nicotin, Cotinin, 3'-trans-Hydroxycotinin und Anabasin in Urin quantifiziert.

Nicotin stellt das Hauptalkaloid der Tabakpflanze Nicotiana tabacum dar und ist in Urin als Marker eines Tabakproduktkonsums bis zu einigen Stunden nachweisbar. Einen längeren Rückblick ermöglichen die Nicotin-Metabolite Cotinin und trans-3'-Hydroxycotinin.

Allerdings sind Nicotin und seine Metabolite ebenfalls bei einem Patienten, der z. B. Nicotinpflaster zur Rauchentwöhnung nutzt, nachzuweisen. Eine Differenzierung von Rauchern und Substitutionspatienten soll durch den Nachweis von Anabasin ermöglicht werden. Dieses Nebenalkaloid der Tabakpflanze ist nicht in pharmazeutischen Produkten wie Nicotinpflastern vorhanden und daher bei Patienten in einer konsequenten Rauchentwöhnungstherapie nicht nachzuweisen. Noch bedarf es der Sammlung weiterer Daten, um die erwartete hohe Spezifität des Anabasins als Marker für einen Tabakprodukt-Konsum zu bestätigen.

Nicht außer Acht zu lassen sind E-Liquids, deren Nicotin oftmals aus Tabak gewonnen wird. Auch diese können Anabasin enthalten. Daher kann auch im Urin von sogenannten Dampfern Anabasin nachweisbar sein und sie sind nicht von konventionellen Rauchern zu unterscheiden.

EDITORIAL

star.net® Labor

Liebe Leserinnen und Leser,

bereits im dritten Jahr stellen wir Ihnen mit dem Sonic-Newsletter Fachbeiträge aus allen Laboratorien unseres Verbundes in Deutschland vor.

In der vorliegenden ersten Ausgabe dieses Jahres befassen sich die Autoren unter anderem mit neuen Leitlinien zu einem "alten Bekannten" dem Helicobacter pylori. Außerdem finden Sie Artikel zum sekundären Raynaud-Syndrom, zur Diagnostik von Autoimmunmyopathien und Hämolytischen Anämien.

Mit unserem Ärzteteam aus verschiedenen Fachgebieten arbeiten wir täglich gerne für eine möglichst optimale Versorgung Ihrer Patienten.

Viel Freude beim Lesen der Lektüre. Mit freundlichen kollegialen Grüßen

Dr. med. Oliver Harzer Arzt für Laboratoriumsmedizin Geschäftsführer Labdiagnostik GmbH

Marker des Knochenabbaus – CrossLaps

DR. MED. TUNAY ASLAN

Basisprofil Osteoporose-Labor: BSG/CRP, Differential-blutbild, Kalzium, Phosphat, Natrium, alkalische Phosphatase, γ-GT, Kreatinin (einschl. GFR), basales TSH, Eiweiß-Elektrophorese.

Abklärung sekundäre Osteoporose: Testosteron, Östrogen, 25-OH-Vitamin D und Parathormon.

Cave: mit diesem Profil wird die primäre Form der Osteoporose (postmenopausale und senile Osteoporose) nicht erfasst.

CrossLaps...

- sind die C-terminalen Telopeptide des Typ I-Kollagens, auch als CTX-I bezeichnet
- gelangen beim Knochenabbau ins Blut
- unterliegen einem Tagesrhythmus mit Maximum bei Nacht und Minimum gegen Nachmittag
- Dialysepatienten unterliegen NICHT einem Tagesrhythmus, da CrossLaps dialysiert werden
- korrelieren gut mit Parathormon und Osteocalcin
- können bereits nach 3 Monaten Änderungen im Knochenstoffwechsel anzeigen, Knochendichtemessung erst nach ca. 2 Jahren
- werden bei 2 spezifischen Indikationen in der Diagnostik angewandt:
- 1. Monitoring der veränderten Knochenresorption bei antiresorptiven Therapien bei postmenopausalen Frauen und/oder Patienten mit Osteopenie durch folgende Therapieformen:
- a. Hormonersatztherapie (HRT)
- b. Andere Pharmaka mit hormonartiger Wirkung,
- z. B. Teriparatid
- c. Bisphosphonattherapie, z. B. Alendronsäure, Risedronat, u. a.
- 2. Prognose der Knochen-Mineraldichte bei postmenopausalen Frauen unter anti-resorptiver Therapie.

ZUSAMMENFASSUNG

CrossLaps gelten als zuverlässige Marker für einen erhöhten Knochenabbau (Osteoporose), insbesondere bei postmenopausalen Frauen.

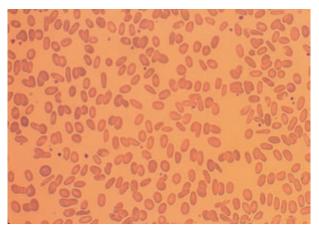
Es besteht eine gute Korrelation sowohl mit Parathormon und dem Knochenbildungsmarker Osteocalcin. Einflussfaktoren wie z. B. die erhebliche Tagesrhythmik, sind zur richtigen Beurteilung zu beachten. Daher ist die Nüchternblutentnahme morgens bis spätestens 8:30 Uhr dringend erforderlich.

Neue Herzinsuffizienztherapie mit Sacubitril / Valsartan

PROF. DR. MED. WOLFGANG KAMINSKI

Ein neues Herzmedikament hat Ende des letzten Jahres von der europäischen Arzneimittelbehörde EMA die Zulassung erhalten. Das unter dem Namen Entresto® vertriebene Medikament enthält die pharmakologische Kombination aus dem neuartigen Neprilysin-Inhibitor Sacubitril und dem bekannten AT1-Rezeptorblocker Valsartan. Indikationsfeld für das neue Präparat ist die Behandlung Erwachsener mit symptomatischer chronischer Herzinsuffizienz mit reduzierter Auswurffraktion.

Die Zulassungsempfehlung für Entresto® basiert auf den Ergebnissen der PARADIGM-HF Studie, in der mehr als 8000 Herzinsuffizienz-Patienten untersucht wurden. Die Studie wurde vorzeitig abgebrochen, nachdem unter der Einnahme von Sacubitril/Valsartan im Vergleich zur bisherigen Standardmedikation mit dem ACE-Hemmer Enalapril signifikant weniger kardiovaskuläre Todesfälle oder Krankenhauseinweisungen aufgetreten waren. In beiden Gruppen war das Nebenwirkungsspektrum vergleichbar. Bei den mit Sacubitril/Valsartan behandelten Patienten traten allerdings häufiger Hypotonien sowie Angioödeme auf, während die Enalapril-Patientengruppe öfter unter Hyperkaliämien, Nierenfunktionsstörungen und Husten litt.


Laut Hersteller soll Entresto® zweimal täglich eingenommen werden. Das Wirkprinzip beruht auf der Kombination zweier Mechanismen, der jeder für sich die Wasserretention hemmt: Valsartan inhibiert das Renin-Angiotensin-Aldosteron-System und damit die aldosteronbedingte Wassereinlagerung. Sacubitril hemmt das körpereigene Enzym Neprilysin, das natriuretische Peptide, wie das BNP, abbaut und führt damit zur Wirkungsverstärkung dieser wasserausscheidenden Hormone. Zudem blockiert Sacubitril den Abbau von vasodilatierenden Substanzen wie Bradykinin und fördert so die Weitstellung von Gefäßen.

Hämolytische Anämien: ein kurzer Leitfaden zur Differentialdiagnostik

DOCTOR-MEDIC NORA ILONA BEDÖ

Eine hämolytische Anämie ist charakterisiert durch die Verkürzung der Erythrozytenüberlebenszeit (normal 120 Tage). Eine manifeste Anämie (Verminderung des Hb) tritt erst auf, wenn eine kompensatorisch gesteigerte Erythropoese im Knochenmark nicht ausreicht, um die zerstörten Erythrozyten zu ersetzen. Dementsprechend variabel und Ursachen-abhängig ist der Verlauf: klinisch inapparente Fälle sind ebenso möglich wie leichte Anämien mit Leistungsminderung und auch schwere hämolytische Krisen mit Ikterus und Splenomegalie.

Die Tabelle unten gibt Ihnen einen Überblick über die Einteilung hämolytischer Anämien und eine Übersicht der für die Differentialdiagnostik wichtigen Laborparameter.

Elliptozytose

HÄMOLYTISCHE ANÄMIEN (HA)

Basisdiagnostik: Blutbild mit Erythrozytenmorphologie
Hämolyseparameter: indirektes Bilirubin ↑; LDH ↑; Retikulozyten ↑; Haptoglobin ♦; Hämopexin ♦; Ferritin ↑

Coombs negativ										
Korpuskuläre HA					Extrakorpuskuläre HA					
	Hereditär		Erworb	en						
Membran- anomalien	Enzymo- penisch	Hämoglob pathien	oino- Memb defekt	ran-	Chemisch	Mechanisch	Mikroang pathisch		Infektiös	
Sphärozy- tose Osmotische Erythrozy- tenresistenz EMA-Test	G6PDH- Mangel Pyruvatkina- se-Mangel Enzymakti- vität Genetik	Thalassämi Anomale Hämogloir Hb-Differe zierung Genetik	Durchine zytom	etrie	Medikamente Toxine Chemikalien	Herz- klappen	HUS Shigatox TTP (Mor Moschco ADAMTS HELLP	bus witz)	Malaria Dicker Tropfen	
Coombs positiv (serogene HA)										
Alloantikörper				Autoimmunhämolytische Anämie (AIHA)						
Transfusions- reaktion Ak-Suchtest Coombs-Test	ticus neonatorum Ak- test Direkter Coo		Wärme-Ak (70 Ak-Suchtest Coombs-Test	,	Kälte-AK (20%) Ak-Suchtest Coombs-Test	Medikame induzierter Ak-Suchte Coombs-T	Typ st	Ak-Su	teiner Typ	

Von der CK zum Myositisblot: Diagnostik von Autoimmunmyopathien

MICHAEL GRÜNWALD

Die Creatinkinase (CK) ist der wichtigste Laborparameter bei einem Verdacht auf Skelettmuskelerkrankungen. Viele CK-Erhöhungen resultieren aus Verletzungen beim Sport oder bei anderen körperlichen Aktivitäten und sind reversibel. Eine länger bestehende Erhöhung der CK sollte Anlass zu weiterer Diagnostik sein, vor allem wenn sie von Symptomen wie Muskelschwäche, Gelenkschmerzen, Hautveränderungen, "Mechanikerhänden", Raynaud-Syndrom, Schluckstörungen, Lungenfibrose und Entzündungszeichen begleitet wird.

Ursächlich kommen u.a. autoimmune Myositissyndrome in Betracht, deren Prävalenz möglicherweise unterschätzt wird. Dabei handelt es sich um eine heterogene Gruppe von Erkrankungen, die zu den Kollagenosen gezählt werden. Der Nachweis antinukleärer Antikörper (ANA) ist als Suchtest nicht ausreichend, da er nicht alle diagnostisch relevanten Autoantikörper erfasst. Mit dem "Myositisblot" steht ein sensitiver und spezifischer Test

zum Nachweis von 15 Myositis-assoziierten Auto-Ak zur Verfügung. Diese Auto-Ak erlauben zusätzlich eine differentialdiagnostische Zuordnung zu verschiedenen Krankheitsentitäten (siehe Tabelle).

Die für paraneoplastische Formen typischen Auto-Ak Mi- 2β -, TIF1 γ - oder MDA5-Ak können bei älteren Patienten frühzeitig auf ein zugrundeliegendes Malignom hinweisen.

Während bei Myositissyndromen die Entzündung im Vordergrund steht, dominiert bei anderen autoimmun bedingten Myopathien die progrediente Muskelschwäche. Die CK ist meist normal, manchmal geringfügig erhöht, ANA und Myositisblot bleiben negativ. In einem solchen Fall sollte an eine Myasthenie gedacht werden: die Bestimmung der mit myasthenen Syndromen assoziierten Autoantikörper ist hier richtungsweisend und Diagnose sichernd.

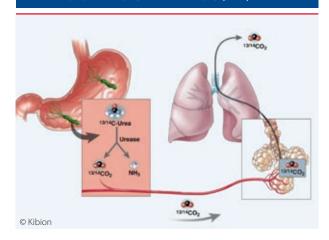
DIFFERENTIALDIAGNOSTIK VON AUTOIMMUNMYOPATHIEN Assoziierte Autoantikörper Mi-2a Myositissyndrome Suchtest: ANA, Myositits-Blot Mi-2β TIF1y MDA5 Dermatomyositis Mi-2α-Ak, NXP2-Ak NXP2 SAE1 Dermatomyositis paraneoplastisch Mi-2β-Ak, TIF1γ-Ak, MDA5-Ak Ku PM-Scl-100 Polymyositis Jo-1-, PL12-, PL7-, EJ-, OJ-Ak PM-Scl75 Jo-1 Nekrotisierende autoimmune Myositis SRP-Ak SRP PL-7 Einschlusskörperchen-Myositis cN-1A-Ak PL-12 Myositis-Overlap-Syndrome PM-Scl-100-Ak, Ku-Ak FΙ OJ Myasthene Syndrome Ro-52 Acetylcholin-Rezeptor-Ak, MuSK-Ak, Kontrolle/ Myasthenia gravis LRP4-Ak Ca-Kanal-Ak Lambert-Eaton-Syndrom

Positiver Myositisblot mit Nachweis von PL-7 Ak

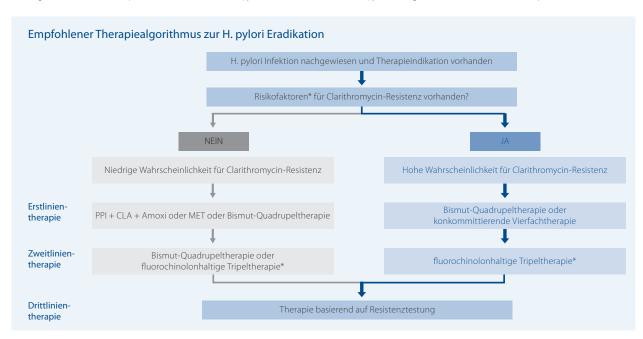
Nach wie vor aktuell: Helicobacter pylori (HP) – Neue Leitlinie veröffentlicht

PROF. DR. MED. TAMMO VON SCHRENCK, DR. MED. BRITTA BEIL

Gerade ist die neue Leitlinie DGVS erschienen. Was ist neu? Empfohlen werden bei aktueller Infektion Urease-Test, Histologie, Kultur, PCR, Antigen-Stuhltest und ¹³C-Harnstoff-Atemtest (HAT), nicht aber Serum-Antikörper (AK), da sie auch nach erfolgreicher Therapie nachweisbar sind. Nicht empfohlen werden AK in Urin und Speichel, Schnelltests auf AK (Blut) oder Antigen (Stuhl). Ureaseabhängige Tests können auch bei bakterieller Fehlbesiedlung des Magens (z. B. bei Mangel an Magensäure) positiv werden. Der HAT wird nun auch für die primäre Diagnostik und die Kontrolle nach HP-Eradikation empfohlen, z. B. wenn wie beim Ulkus duodeni keine Endoskopie-Kontrolle notwendig ist. Auch vor einer geplanten Dauertherapie mit NSAR mit Ulkusanamnese sollte eine HP-Testung erfolgen und ggf. behandelt werden.


Ein ernsthaftes Problem bei der HP-Therapie ist die Antibiotika-Resistenz: Die Rate stieg für Clarithromycin (CLA) in Deutschland von 4.8% (2001/2002) auf 10,9% (2011/2012) und erreicht vor allem in Süd- und Ost-Europa bis zu 36,6%.

Selbstverständlich stehen Ihnen bei uns alle HP-Testverfahren, auch der nicht-invasive HAT und auch die mikrobiologischen Nachweise incl. Resistenzbestimmung (wichtig bei Dritt-Linientherapie) zur Verfügung (s. Tab.). Fragen Sie uns gerne!


SENSITIVITÄT UND SPEZIFITÄT DER VERSCHIEDENEN NACHWEISMETHODEN VON H. PYLORI

		Sensitivi- tät (%)	Spezifi- tät (%)
Invasive Methoden	Kultur	70 – 90	100
	Histologie	80 – 98	90 – 98
	Urease-Schnelltest	90 – 95	90 – 95
	PCR	90 – 95	90 – 95
Nicht-invasive Methoden	Harnstoff-Atemtest	85 – 95	85 – 95
	Stuhl-Antigentest auf Basis monoklo- naler Antikörper	85 – 95	85 – 95
	lgG-Antikörper- nachweis im Serum	70 – 90	70 – 90

PRINZIP DES HARNSTOFF-ATEMTESTS (HAT)

 $www.dgvs.de/fileadmin/user_upload/Leitlinien/Helicobacter_pylori/S2k-Leitlinie_Helicobacter_pylori_und_gastroduodenale_Ulkuskrankheit.pdf$

^{*} Risikofaktoren: Herkunftsland des Patienten (Süd-/Osteuropa), frühere Makrolidbehandlung

Sinnvolle Labordiagnostik beim sekundären Raynaud-Syndrom

DR. MED. ANTJE HOHMANN DA SILVA

Das Raynaud-Phänomen ist durch anfallsartig auftretende, weniger als 30 Minuten andauernde Vasospasmen der Akren charakterisiert. Am häufigsten sind die Fingerarterien, seltener Zehen, Ohrläppchen oder die Nasenspitze betroffen. Die Attacken werden v. a. durch Kälte, emotionalen Stress oder lokale Kompressionsphänomene induziert und laufen in drei Phasen ab: Nach initialer Weißfärbung durch Minderperfusion kommt es zunächst zu einer Blaufärbung durch Zyanose und schließlich zu einer schmerzhaften Rötung aufgrund der reaktiven Hyperämie (sog. Trikolore-Phänomen). Ein begleitendes Taubheitsgefühl ist möglich.

Pathogenetisch werden zwei Kategorien unterschieden, wobei die häufigere primäre, idiopathische Form als Morbus Raynaud bezeichnet wird. Das sekundäre Raynaud-Syndrom tritt begleitend zu einer Grunderkrankung auf, die am häufigsten zum rheumatischen Formenkreis gehört (Kollagenose, Rheumatoide Arthritis). Aber auch hämatologische und endokrine Erkrankungen, vaskuläre Schädigungen, wiederholte mechanische Traumata (z. B. Vibration durch Maschinen) und bestimmte Arzneimittel (bspw. Betablocker, Clonidin, Ergotamin, Vinylchlorid, Bleomycin) oder Drogen (z. B. Amphetamine oder Kokain) können mit einem sekundären Raynaud-Syndrom einhergehen.

Neben Basislaborparametern (BSG, CRP, BB, Serumeiweißelektrophorese, Harnsäure, LDH) ist bei Verdacht auf eine der u. g. Grunderkrankungen eine erweiterte Labordiagnostik sinnvoll.

Anpassung der Lipidgrenzwerte an das individuelle kardiovaskuläre Risiko.

DR. MED. ANDREAS I ÄMMEL

Nach der aktuellen Leitlinie der European Society of Cardiology (ESC) und der European Atherosclerosis Society (EAS) für das klinische Management der Dyslipidämien (Eur Heart J (2011) 32, 1769-1818) sollten für das LDL-Cholesterin (LDL-C) – den Lipidparameter mit dem höchsten atherogenen Potential – unter Berücksichtigung aller kardiovaskulären Risikofaktoren deutlich niedrigere Grenzwerte als bisher angegeben werden. Eine Einschätzung des Gesamtrisikos ist mittels Bestimmung des HeartScore (HS) möglich, der das 10-Jahres-Risiko für die kardiovaskuläre Mortalität angibt (www.heartscore.org).

Folgende LDL-C-Zielwerte werden empfohlen:

- Sehr hohes Risiko (HS ≥ 10 %, z.B. bei KHK, Diabetes m. Typ 2, Niereninsuffizienz): < 70 mg/dl</p>
- Hohes Risiko (HS ≥ 5 % bis < 10 %, familiäre Hypercholesterinämie): < 100 mg/dl</p>
- Moderates (HS < 5 %) oder niedriges (HS < 1 %) Risiko: < 115 mg/dl

Für das HDL-Cholesterin (HDL-C) und die Triglyceride (TG) sind Zielwerte nicht definiert. Eine HDL-C-Konzentration < 45 mg/dl gilt als Hinweis auf ein erhöhtes Risiko. Für die TG wird eine Konzentration < 150 mg/dl empfohlen. Das Non-HDL-C kann bei einer ausgeprägten Hypertriglyceridämie eine bessere Risikoeinschätzung liefern als das LDL-C. Für das non-HDL-C liegen bei gleichen Risikoabstufungen wie für das LDL-C die Grenzwerte jeweils um 30 mg/dl höher. Eine Quotientenbildung aus Gesamt- oder LDL-C und HDL-C wird wegen teils widersprüchlicher Konstellationen nicht mehr durchgeführt.

	Grunderkrankung	Laborparameter
Kollagenosen/ Rheumatische Erkrankungen	Systemische Sklerose/ CREST-Syndrom MCTD (Sharp-Syndrom) SLE Polymyositis/ Dermatomyositis Rheumatoide Arthritis Sjögren-Syndrom	Scl-70-AK, Centromere-AK RNP-AK ANA, dsDNA-AK, SS-A-AK Jo-1-AK, PmScl-AK u. a. CCP-AK, RF ANA, SS-A- und SS-B-AK
Hämatologische Erkrankungen	Plasmozytom Leukämien, Polycythämia vera, Essenzielle Thrombozythämie Kryoglobulinämie Kälteagglutininämie	Immunfixation (S+U), freie Leichtketten i. S. Diff-BB, KM-Zytologie Kryoglobuline Kälteagglutinine
Endokrine Erkrankungen	Hypothyreose Phäochromozytom Karzinoidsyndrom	TSH (ggf. fT4, MAK) Katecholamine im 24h-SU (mit Säurezusatz) 5-HIES im 24h-SU (mit Säurezusatz)

Blutentnahme (2): "Gleich piekst es"

BERND HARDER

0

Die Blutentnahme erfolgt in der Regel an den oberflächlichen Venen der Ellenbeuge, sonst des Unterarmes oder des Handrückens. Die Staubinde wird eine Handbreit proximal der Punktionsstelle angelegt.

Der Puls muss dabei gut fühlbar sein (Staudruck 50 – 100 mm Hg). Es folgt das visuelle Begutachten und Abtasten der Vene (Lage, Beschaffenheit, Verlauf), anschließend die Desinfektion der Punktionsstelle mit 70-Prozent-Isopropanol. Danach Vene nicht mehr abtasten, nach 30 bis 60 Sekunden Einwirkzeit die desinfizierte Stelle mit trockenem Tupfer abwischen.

Den Patienten nicht "pumpen" und auch keine Faust ballen lassen – auch wenn viele Patienten das vom Blutspenden so gewohnt sind (führt zu falsch hohen Kaliumwerten im Serum).

Die Schutzhülse der Kanüle entfernen, die Schliffseite der Kanüle muss oben sein (wichtig für einen möglichst wenig schmerzhaften Einstich), Haut spannen, Patienten vorwarnen, etwa "Gleich piekst es", mit Einstichwinkel unter 30 Grad zustechen. Sobald Blut fließt, Röhrchen aufsetzen und Stauung lösen.

STAUZEIT UNTER EINER MINUTE

Die Stauzeit sollte so kurz wie möglich sein (unter einer Minute – zu langes Stauen verursacht eine Hämokonzentration, die verschiedene falsch hohe Werte ergibt). Röhrchen vollständig füllen, abnehmen, die weiter benötigten Röhrchen werden nacheinander aufgesetzt und befüllt und abgenommen. Nach Entnahme einen Tupfer auf die Einstechstelle legen, die Kanüle schnell zurückziehen und den Tupfer fest anpressen. Der Patient kann die Punktionsstelle mit dem Tupfer abdrücken, der Arm sollte gestreckt sein. Bei markumarisierten Patienten länger drücken. Danach Anbringen eines Schnellverbandes. Die Kanüle wird einhändig und sofort entsorgt.

star.net® Labor – Deutschlands führendes Order-Entry-System

SASCHA LÜDEMANN

Blutbilder, Leberfunktionsmarker, Nierenwerte: Im Praxisalltag werden täglich Hunderte von Laboranalysen in Auftrag gegeben.

Mit der Software star.net® Labor können Ärzte per Mausklick aus mehreren tausend Analysen die richtigen auswählen und einen vollständigen Auftrag beim Labor in Auftrag geben. Sobald die Genehmigung der KBV/KV für elektronische Signaturen vorliegt, ist dieses auch vollständig papierlos und mit einer PIN-Eingabe pro Tag möglich.

Bei Auftragserstellung werden dem Arzt umfangreiche präanalytische Hinweise zur Verfügung gestellt. Abrechnungs- und Zusatzangaben können ebenso hinterlegt werden wie die allgemeinen Patientendaten, welche von allen gängigen Praxisprogrammen elektronisch an star.net® Labor übertragen werden können.

Befunde werden auf Wunsch papierlos und in Echtzeit an den Arzt zurückübermittelt. Kumulierte Befunde mit detaillierten grafischen Auswertungen erleichtern demnächst dem Arzt die Übersicht über den Krankheitsverlauf und unterstützen ihn in der Behandlung seiner Patienten.

Das eigens von Sonic Healthcare entwickelte Softwaresystem star.net® Labor steht ausschließlich Einsendern von Laboren des Sonic Healthcare Verbundes zur Verfügung. Hat der Arzt eine Frage oder ein Problem, wird er nicht von einem anonymen Callcenter betreut, sondern bekommt direkt Hilfe von qualifizierten Mitarbeitern seines Labors. Bei der Weiterentwicklung des Systems werden die Wünsche und Anregungen der Praxen eng mit einbezogen. Dadurch ist ein "Produkt" entstanden, das genau auf die Praxisanforderungen abgestimmt ist und auch in Zukunft mit weiteren innovativen Features begeistern wird.

Seit dem Rollout im Jahre 2010 arbeiten mittlerweile über 3.000 Praxen mit über 10.000 Anwendern erfolgreich mit star.net® Labor.

Datenschutz in Labor und Praxis

UTE OCH

Datenschutz ist für alle, die im medizinischen Bereich tätig sind, ein besonders wichtiges Thema – gerade in Zeiten, in denen einerseits großzügig Daten im Internet preisgegeben werden, andererseits Datenschutz von den Betroffenen immer häufiger aktiv eingefordert und auch eingeklagt wird.

WAS IST DATENSCHUTZ?

- Welche Patientendaten dürfen wir speichern?
- Wem darf ich Auskunft geben und worüber?
- Was erfährt mein Arbeitgeber über mich?
- Was darf ich zu Hause über meine Arbeit erzählen?

DENKEN SIE BITTE IMMER DARAN:

Datenschutz soll in erster Linie nicht dem Schutz der Daten sondern der betroffenen Personen dienen! Gesundheitsdaten sind besonders schützenswerte Daten, weil deren Offenbarung wirtschaftliche Nachteile und Schaden für das Ansehen der betroffenen Person zur Folge haben kann. Selbstverständlich ist aber auch die Sicherheit der Daten ein wichtiger Aspekt, sodass sie nicht verloren gehen, vernichtet oder verändert werden können.

Deshalb verwendet Ihr Labor sehr viel Zeit und Sorgfalt auf die Einhaltung des Datenschutzes. Von der Abholung der Proben bis zur Übermittlung der Befunde verpflichten sich alle Mitarbeiter, mit allen Informationen und Daten, die uns zur Ausübung unserer Tätigkeit zur Kenntnis gelangen, sorgfältig umzugehen und die vom Gesetzgeber vorgeschriebenen Aufbewahrungsfristen einzuhalten. Geschäftsleitung, QM- und Datenschutzbeauftragte und IT-Abteilung arbeiten auf diesem Gebiet eng zusammen. Technische und organisatorische Maßnahmen auf allen Ebenen gewährleisten den Schutz und die Sicherheit Ihrer Daten.

In Ihrer Praxis können Sie den Patienten schon mit vielen kleinen organisatorischen Maßnahmen die Sicherheit vermitteln, dass Sie den Schutz der Patientendaten ernst nehmen, z. B.:

- Bildschirme so aufstellen, dass Patienten nicht hineinsehen können
- beim Verlassen eines PC-Arbeitsplatzes ausloggen
- Diskretion beim Gespräch an der Anmeldung und am Telefon, Patientennamen nicht laut nennen
- Tür zum Wartezimmer geschlossen halten, Patientenaufruf in dezenter Lautstärke
- Patientenakten, Befunde und Briefe nicht offen herumliegen lassen und nur im Umschlag an Patienten weitergeben
- beim Versand eines Fax die Eingabe der Nummer gewissenhaft prüfen

Damit alle Praxismitarbeiter das Thema Datenschutz jederzeit als wichtigen Teil ihrer Arbeit wahrnehmen, sind jährliche Schulungen unerlässlich und durch das Bundesdatenschutzgesetz (BDSG) vorgeschrieben.

Impressum

Newsletter der Sonic Healthcare Germany

Herausgeber

Sonic Healthcare Germany GmbH & Co. KG Geschäftsführer: Evangelos Kotsopoulos (V.i.S.d.P.) Mecklenburgische Straße 28, 14197 Berlin www.sonichealthcare.de

Ein Service Ihres Laborpartners Labdiagnostik

Labdiagnostik GmbH Kaiserstraße 53 60329 Frankfurt Telefon: 069 2561286-0 Fax: 069 2561286-29 www.labdiagnostik.de

